CenterNet
CenterNet class
dlf.models.centernet.CenterNet(
feature_extractor,
num_classes=12,
score_threshold=0.1,
pooling_nms=True,
dropout_rate=None,
max_objects=100,
weight_decay=None,
model_weights=None,
summary=False,
optimizer=None,
loss=None,
**kwargs
)
A implementation of CenterNet for object detection
Aliases
- CenterNet
- center_net
- centernet
Arguments
- feature_extractor: dict. A feature extractor
- num_classes: int. Number of classes to detect
- score_threshold: float, optional. Minimum classification score to be a valid box
- pooling_nms: bool, optional. If true, max pooling is used as non maximum suppression. Defaults to False.
- dropout_rate: float, optional. Dropout rate if None no dropout is used. Defaults to None.
- max_objects: int, optional. max number of objects to detect. Defaults to 100.
- weight_decay: float, optional. Weight decay factor. Defaults to None.
- model_weights: str, optional. Path to the pretrained model weights. Defaults to None.
- summary: bool, optional. If true a summary of the model will be printed to stdout. Defaults to False.
- optimizer: list of dict, optional. Name of optimizer used for training.
- loss: list of dict, optional. List of loss objects to build for this model. Defaults to None.
YAML Configuration
model:
centernet:
feature_extractor:
model_name: ResNet50
input_shape:
- &width 512
- &height 512
- 3
weights: "imagenet"
num_classes: 6
weight_decay: 0.0005
summary: True
loss:
centernetloss:
optimizer:
- Adam: # lr for simclr unsupervised
learning_rate:
PolynomialDecay:
initial_learning_rate: 0.001
decay_steps: 195312
end_learning_rate: 0.00001
References