Usage in framework
All in tf.keras.metrics available metrics can be used in our framework. Just use the class name as configuration key and the arguments as as dict.
YAML Configuration
E.g. for tf.metrics.MeanAbsoluteError without no arguments
metrics:
MeanSquaredError:
or for tf.metrics.MeanIoU with arguments:
metrics:
MeanIoU:
num_classes: 7
Keras metrics
AUC class
tensorflow.keras.metrics.AUC(
num_thresholds=200,
curve="ROC",
summation_method="interpolation",
name=None,
dtype=None,
thresholds=None,
multi_label=False,
label_weights=None,
)
Computes the approximate AUC (Area under the curve) via a Riemann sum.
This metric creates four local variables, true_positives
, true_negatives
,
false_positives
and false_negatives
that are used to compute the AUC.
To discretize the AUC curve, a linearly spaced set of thresholds is used to
compute pairs of recall and precision values. The area under the ROC-curve is
therefore computed using the height of the recall values by the false positive
rate, while the area under the PR-curve is the computed using the height of
the precision values by the recall.
This value is ultimately returned as auc
, an idempotent operation that
computes the area under a discretized curve of precision versus recall values
(computed using the aforementioned variables). The num_thresholds
variable
controls the degree of discretization with larger numbers of thresholds more
closely approximating the true AUC. The quality of the approximation may vary
dramatically depending on num_thresholds
. The thresholds
parameter can be
used to manually specify thresholds which split the predictions more evenly.
For best results, predictions
should be distributed approximately uniformly
in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC
approximation may be poor if this is not the case. Setting summation_method
to 'minoring' or 'majoring' can help quantify the error in the approximation
by providing lower or upper bound estimate of the AUC.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use when discretizing the roc curve. Values must be > 1.
curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
[default] or 'PR' for the Precision-Recall-curve.
summation_method: (Optional) Specifies the Riemann summation method used.
'interpolation' (default) applies mid-point summation scheme for ROC
.
For PR-AUC, interpolates (true/false) positives but not the ratio that
is precision (see Davis & Goadrich 2006 for details);
'minoring' applies left summation
for increasing intervals and right summation for decreasing intervals;
'majoring' does the opposite.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
thresholds: (Optional) A list of floating point values to use as the
thresholds for discretizing the curve. If set, the num_thresholds
parameter is ignored. Values should be in [0, 1]. Endpoint thresholds
equal to {-epsilon, 1+epsilon} for a small positive epsilon value will
be automatically included with these to correctly handle predictions
equal to exactly 0 or 1.
multi_label: boolean indicating whether multilabel data should be
treated as such, wherein AUC is computed separately for each label and
then averaged across labels, or (when False) if the data should be
flattened into a single label before AUC computation. In the latter
case, when multilabel data is passed to AUC, each label-prediction pair
is treated as an individual data point. Should be set to False for
multi-class data.
label_weights: (optional) list, array, or tensor of non-negative weights
used to compute AUCs for multilabel data. When multi_label
is True,
the weights are applied to the individual label AUCs when they are
averaged to produce the multi-label AUC. When it's False, they are used
to weight the individual label predictions in computing the confusion
matrix on the flattened data. Note that this is unlike class_weights in
that class_weights weights the example depending on the value of its
label, whereas label_weights depends only on the index of that label
before flattening; therefore label_weights
should not be used for
multi-class data.
Standalone usage:
m = tf.keras.metrics.AUC(num_thresholds=3) m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
threshold values are [0 - 1e-7, 0.5, 1 + 1e-7]
tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2]
recall = [1, 0.5, 0], fp_rate = [1, 0, 0]
auc = ((((1+0.5)/2)(1-0))+ (((0.5+0)/2)(0-0))) = 0.75
m.result().numpy() 0.75
m.reset_states() m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9], ... sample_weight=[1, 0, 0, 1]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd', loss='mse', metrics=[tf.keras.metrics.AUC()])
Accuracy class
tensorflow.keras.metrics.Accuracy(name="accuracy", dtype=None)
Calculates how often predictions equal labels.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as binary accuracy
: an idempotent operation that simply
divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Accuracy() m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]]) m.result().numpy() 0.75
m.reset_states() m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]], ... sample_weight=[1, 1, 0, 0]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Accuracy()])
BinaryAccuracy class
tensorflow.keras.metrics.BinaryAccuracy(name="binary_accuracy", dtype=None, threshold=0.5)
Calculates how often predictions match binary labels.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as binary accuracy
: an idempotent operation that simply
divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. threshold: (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0.
Standalone usage:
m = tf.keras.metrics.BinaryAccuracy() m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]]) m.result().numpy() 0.75
m.reset_states() m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]], ... sample_weight=[1, 0, 0, 1]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.BinaryAccuracy()])
BinaryCrossentropy class
tensorflow.keras.metrics.BinaryCrossentropy(
name="binary_crossentropy", dtype=None, from_logits=False, label_smoothing=0
)
Computes the crossentropy metric between the labels and predictions.
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
from_logits: (Optional )Whether output is expected to be a logits tensor.
By default, we consider that output encodes a probability distribution.
label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are
smoothed, meaning the confidence on label values are relaxed.
e.g. label_smoothing=0.2
means that we will use a value of 0.1
for
label 0
and 0.9
for label 1
".
Standalone usage:
m = tf.keras.metrics.BinaryCrossentropy() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) m.result().numpy() 0.81492424
m.reset_states() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) m.result().numpy() 0.9162905
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.BinaryCrossentropy()])
CategoricalAccuracy class
tensorflow.keras.metrics.CategoricalAccuracy(name="categorical_accuracy", dtype=None)
Calculates how often predictions matches one-hot labels.
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as categorical accuracy
: an idempotent operation that
simply divides total
by count
.
y_pred
and y_true
should be passed in as vectors of probabilities, rather
than as labels. If necessary, use tf.one_hot
to expand y_true
as a vector.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.CategoricalAccuracy() m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0.05, 0.95, 0]]) m.result().numpy() 0.5
m.reset_states() m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) m.result().numpy() 0.3
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CategoricalAccuracy()])
CategoricalCrossentropy class
tensorflow.keras.metrics.CategoricalCrossentropy(
name="categorical_crossentropy", dtype=None, from_logits=False, label_smoothing=0
)
Computes the crossentropy metric between the labels and predictions.
This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). Here we assume that labels are given as a one_hot
representation. eg., When labels values are [2, 0, 1],
y_true
= [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
from_logits: (Optional) Whether output is expected to be a logits tensor.
By default, we consider that output encodes a probability distribution.
label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are
smoothed, meaning the confidence on label values are relaxed. e.g.
label_smoothing=0.2
means that we will use a value of 0.1
for label
0
and 0.9
for label 1
"
Standalone usage:
EPSILON = 1e-7, y = y_true, y` = y_pred
y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
xent = -sum(y * log(y'), axis = -1)
= -((log 0.95), (log 0.1))
= [0.051, 2.302]
Reduced xent = (0.051 + 2.302) / 2
m = tf.keras.metrics.CategoricalCrossentropy() m.update_state([[0, 1, 0], [0, 0, 1]], ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) m.result().numpy() 1.1769392
m.reset_states() m.update_state([[0, 1, 0], [0, 0, 1]], ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], ... sample_weight=tf.constant([0.3, 0.7])) m.result().numpy() 1.6271976
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CategoricalCrossentropy()])
CategoricalHinge class
tensorflow.keras.metrics.CategoricalHinge(name="categorical_hinge", dtype=None)
Computes the categorical hinge metric between y_true
and y_pred
.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.CategoricalHinge() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) m.result().numpy() 1.4000001
m.reset_states() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) m.result().numpy() 1.2
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CategoricalHinge()])
CosineSimilarity class
tensorflow.keras.metrics.CosineSimilarity(name="cosine_similarity", dtype=None, axis=-1)
Computes the cosine similarity between the labels and predictions.
cosine similarity = (a . b) / ||a|| ||b||
See: Cosine Similarity.
This metric keeps the average cosine similarity between predictions
and
labels
over a stream of data.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. axis: (Optional) Defaults to -1. The dimension along which the cosine similarity is computed.
Standalone usage:
l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]]
l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]]
l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
result = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
= ((0. + 0.) + (0.5 + 0.5)) / 2
m = tf.keras.metrics.CosineSimilarity(axis=1) m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]]) m.result().numpy() 0.49999997
m.reset_states() m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]], ... sample_weight=[0.3, 0.7]) m.result().numpy() 0.6999999
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CosineSimilarity(axis=1)])
FalseNegatives class
tensorflow.keras.metrics.FalseNegatives(thresholds=None, name=None, dtype=None)
Calculates the number of false negatives.
If sample_weight
is given, calculates the sum of the weights of
false negatives. This metric creates one local variable, accumulator
that is used to keep track of the number of false negatives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true
, below is false
). One metric
value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.FalseNegatives() m.update_state([0, 1, 1, 1], [0, 1, 0, 0]) m.result().numpy() 2.0
m.reset_states() m.update_state([0, 1, 1, 1], [0, 1, 0, 0], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.FalseNegatives()])
FalsePositives class
tensorflow.keras.metrics.FalsePositives(thresholds=None, name=None, dtype=None)
Calculates the number of false positives.
If sample_weight
is given, calculates the sum of the weights of
false positives. This metric creates one local variable, accumulator
that is used to keep track of the number of false positives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true
, below is false
). One metric
value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.FalsePositives() m.update_state([0, 1, 0, 0], [0, 0, 1, 1]) m.result().numpy() 2.0
m.reset_states() m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.FalsePositives()])
Hinge class
tensorflow.keras.metrics.Hinge(name="hinge", dtype=None)
Computes the hinge metric between y_true
and y_pred
.
y_true
values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Hinge() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) m.result().numpy() 1.3
m.reset_states() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) m.result().numpy() 1.1
Usage with compile()
API:
model.compile(optimizer='sgd', loss='mse', metrics=[tf.keras.metrics.Hinge()])
kl_divergence function
tensorflow.keras.metrics.KLD(y_true, y_pred)
Computes Kullback-Leibler divergence loss between y_true
and y_pred
.
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred) assert loss.shape == (2,) y_true = tf.keras.backend.clip(y_true, 1e-7, 1) y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1) assert np.array_equal( ... loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1))
Args: y_true: Tensor of true targets. y_pred: Tensor of predicted targets.
Returns:
A Tensor
with loss.
Raises:
TypeError: If y_true
cannot be cast to the y_pred.dtype
.
KLDivergence class
tensorflow.keras.metrics.KLDivergence(name="kullback_leibler_divergence", dtype=None)
Computes Kullback-Leibler divergence metric between y_true
and y_pred
.
metric = y_true * log(y_true / y_pred)
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.KLDivergence() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) m.result().numpy() 0.45814306
m.reset_states() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) m.result().numpy() 0.9162892
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.KLDivergence()])
LogCoshError class
tensorflow.keras.metrics.LogCoshError(name="logcosh", dtype=None)
Computes the logarithm of the hyperbolic cosine of the prediction error.
logcosh = log((exp(x) + exp(-x))/2)
, where x is the error (y_pred - y_true)
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.LogCoshError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.10844523
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.21689045
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.LogCoshError()])
mean_absolute_error function
tensorflow.keras.metrics.MAE(y_true, y_pred)
Computes the mean absolute error between labels and predictions.
loss = mean(abs(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute error values. shape = [batch_size, d0, .. dN-1]
.
mean_absolute_percentage_error function
tensorflow.keras.metrics.MAPE(y_true, y_pred)
Computes the mean absolute percentage error between y_true
and y_pred
.
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
Standalone usage:
y_true = np.random.random(size=(2, 3)) y_true = np.maximum(y_true, 1e-7) # Prevent division by zero y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), ... 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute percentage error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_error function
tensorflow.keras.metrics.MSE(y_true, y_pred)
Computes the mean squared error between labels and predictions.
After computing the squared distance between the inputs, the mean value over the last dimension is returned.
loss = mean(square(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_logarithmic_error function
tensorflow.keras.metrics.MSLE(y_true, y_pred)
Computes the mean squared logarithmic error between y_true
and y_pred
.
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_logarithmic_error(y_true, y_pred) assert loss.shape == (2,) y_true = np.maximum(y_true, 1e-7) y_pred = np.maximum(y_pred, 1e-7) assert np.allclose( ... loss.numpy(), ... np.mean( ... np.square(np.log(y_true + 1.) - np.log(y_pred + 1.)), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared logarithmic error values. shape = [batch_size, d0, .. dN-1]
.
Mean class
tensorflow.keras.metrics.Mean(name="mean", dtype=None)
Computes the (weighted) mean of the given values.
For example, if values is [1, 3, 5, 7] then the mean is 4. If the weights were specified as [1, 1, 0, 0] then the mean would be 2.
This metric creates two variables, total
and count
that are used to
compute the average of values
. This average is ultimately returned as mean
which is an idempotent operation that simply divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Mean() m.update_state([1, 3, 5, 7]) m.result().numpy() 4.0 m.reset_states() m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0]) m.result().numpy() 2.0
Usage with compile()
API:
model.add_metric(tf.keras.metrics.Mean(name='mean_1')(outputs))
model.compile(optimizer='sgd', loss='mse')
MeanAbsoluteError class
tensorflow.keras.metrics.MeanAbsoluteError(name="mean_absolute_error", dtype=None)
Computes the mean absolute error between the labels and predictions.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanAbsoluteError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.25
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanAbsoluteError()])
MeanAbsolutePercentageError class
tensorflow.keras.metrics.MeanAbsolutePercentageError(name="mean_absolute_percentage_error", dtype=None)
Computes the mean absolute percentage error between y_true
and y_pred
.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanAbsolutePercentageError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 250000000.0
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 500000000.0
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
MeanIoU class
tensorflow.keras.metrics.MeanIoU(num_classes, name=None, dtype=None)
Computes the mean Intersection-Over-Union metric.
Mean Intersection-Over-Union is a common evaluation metric for semantic image
segmentation, which first computes the IOU for each semantic class and then
computes the average over classes. IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative).
The predictions are accumulated in a confusion matrix, weighted by
sample_weight
and the metric is then calculated from it.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
cm = [[1, 1],
[1, 1]]
sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]
iou = true_positives / (sum_row + sum_col - true_positives))
result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33
m = tf.keras.metrics.MeanIoU(num_classes=2) m.update_state([0, 0, 1, 1], [0, 1, 0, 1]) m.result().numpy() 0.33333334
m.reset_states() m.update_state([0, 0, 1, 1], [0, 1, 0, 1], ... sample_weight=[0.3, 0.3, 0.3, 0.1]) m.result().numpy() 0.23809525
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanIoU(num_classes=2)])
MeanRelativeError class
tensorflow.keras.metrics.MeanRelativeError(normalizer, name=None, dtype=None)
Computes the mean relative error by normalizing with the given values.
This metric creates two local variables, total
and count
that are used to
compute the mean relative error. This is weighted by sample_weight
, and
it is ultimately returned as mean_relative_error
:
an idempotent operation that simply divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: normalizer: The normalizer values with same shape as predictions. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3]) m.update_state([1, 3, 2, 3], [2, 4, 6, 8])
metric = mean(|y_pred - y_true| / normalizer)
= mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3])
= 5/4 = 1.25
m.result().numpy() 1.25
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanRelativeError(normalizer=[1, 3])])
MeanSquaredError class
tensorflow.keras.metrics.MeanSquaredError(name="mean_squared_error", dtype=None)
Computes the mean squared error between y_true
and y_pred
.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanSquaredError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.25
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredError()])
MeanSquaredLogarithmicError class
tensorflow.keras.metrics.MeanSquaredLogarithmicError(name="mean_squared_logarithmic_error", dtype=None)
Computes the mean squared logarithmic error between y_true
and y_pred
.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanSquaredLogarithmicError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.12011322
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.24022643
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredLogarithmicError()])
MeanTensor class
tensorflow.keras.metrics.MeanTensor(name="mean_tensor", dtype=None)
Computes the element-wise (weighted) mean of the given tensors.
MeanTensor
returns a tensor with the same shape of the input tensors. The
mean value is updated by keeping local variables total
and count
. The
total
tracks the sum of the weighted values, and count
stores the sum of
the weighted counts.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.MeanTensor() m.update_state([0, 1, 2, 3]) m.update_state([4, 5, 6, 7]) m.result().numpy() array([2., 3., 4., 5.], dtype=float32)
m.update_state([12, 10, 8, 6], sample_weight= [0, 0.2, 0.5, 1]) m.result().numpy() array([2. , 3.6363635, 4.8 , 5.3333335], dtype=float32)
Metric class
tensorflow.keras.metrics.Metric(name=None, dtype=None, **kwargs)
Encapsulates metric logic and state.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. **kwargs: Additional layer keywords arguments.
Standalone usage:
m = SomeMetric(...)
for input in ...:
m.update_state(input)
print('Final result: ', m.result().numpy())
Usage with compile()
API:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[tf.keras.metrics.CategoricalAccuracy()])
data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)
model.fit(dataset, epochs=10)
To be implemented by subclasses:
* __init__()
: All state variables should be created in this method by
calling self.add_weight()
like: self.var = self.add_weight(...)
* update_state()
: Has all updates to the state variables like:
self.var.assign_add(...).
* result()
: Computes and returns a value for the metric
from the state variables.
Example subclass implementation:
class BinaryTruePositives(tf.keras.metrics.Metric):
def __init__(self, name='binary_true_positives', **kwargs):
super(BinaryTruePositives, self).__init__(name=name, **kwargs)
self.true_positives = self.add_weight(name='tp', initializer='zeros')
def update_state(self, y_true, y_pred, sample_weight=None):
y_true = tf.cast(y_true, tf.bool)
y_pred = tf.cast(y_pred, tf.bool)
values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True))
values = tf.cast(values, self.dtype)
if sample_weight is not None:
sample_weight = tf.cast(sample_weight, self.dtype)
sample_weight = tf.broadcast_to(sample_weight, values.shape)
values = tf.multiply(values, sample_weight)
self.true_positives.assign_add(tf.reduce_sum(values))
def result(self):
return self.true_positives
Poisson class
tensorflow.keras.metrics.Poisson(name="poisson", dtype=None)
Computes the Poisson metric between y_true
and y_pred
.
metric = y_pred - y_true * log(y_pred)
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Poisson() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.49999997
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.99999994
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Poisson()])
Precision class
tensorflow.keras.metrics.Precision(thresholds=None, top_k=None, class_id=None, name=None, dtype=None)
Computes the precision of the predictions with respect to the labels.
The metric creates two local variables, true_positives
and false_positives
that are used to compute the precision. This value is ultimately returned as
precision
, an idempotent operation that simply divides true_positives
by the sum of true_positives
and false_positives
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
If top_k
is set, we'll calculate precision as how often on average a class
among the top-k classes with the highest predicted values of a batch entry is
correct and can be found in the label for that entry.
If class_id
is specified, we calculate precision by considering only the
entries in the batch for which class_id
is above the threshold and/or in the
top-k highest predictions, and computing the fraction of them for which
class_id
is indeed a correct label.
Args:
thresholds: (Optional) A float value or a python list/tuple of float
threshold values in [0, 1]. A threshold is compared with prediction
values to determine the truth value of predictions (i.e., above the
threshold is true
, below is false
). One metric value is generated
for each threshold value. If neither thresholds nor top_k are set, the
default is to calculate precision with thresholds=0.5
.
top_k: (Optional) Unset by default. An int value specifying the top-k
predictions to consider when calculating precision.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval [0, num_classes)
, where
num_classes
is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Precision() m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) m.result().numpy() 0.6666667
m.reset_states() m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
With top_k=2, it will calculate precision over y_true[:2] and y_pred[:2]
m = tf.keras.metrics.Precision(top_k=2) m.update_state([0, 0, 1, 1], [1, 1, 1, 1]) m.result().numpy() 0.0
With top_k=4, it will calculate precision over y_true[:4] and y_pred[:4]
m = tf.keras.metrics.Precision(top_k=4) m.update_state([0, 0, 1, 1], [1, 1, 1, 1]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Precision()])
PrecisionAtRecall class
tensorflow.keras.metrics.PrecisionAtRecall(recall, num_thresholds=200, name=None, dtype=None)
Computes best precision where recall is >= specified value.
This metric creates four local variables, true_positives
, true_negatives
,
false_positives
and false_negatives
that are used to compute the
precision at the given recall. The threshold for the given recall
value is computed and used to evaluate the corresponding precision.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
recall: A scalar value in range [0, 1]
.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given recall.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.PrecisionAtRecall(0.5) m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) m.result().numpy() 0.5
m.reset_states() m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], ... sample_weight=[2, 2, 2, 1, 1]) m.result().numpy() 0.33333333
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.PrecisionAtRecall(recall=0.8)])
Recall class
tensorflow.keras.metrics.Recall(thresholds=None, top_k=None, class_id=None, name=None, dtype=None)
Computes the recall of the predictions with respect to the labels.
This metric creates two local variables, true_positives
and
false_negatives
, that are used to compute the recall. This value is
ultimately returned as recall
, an idempotent operation that simply divides
true_positives
by the sum of true_positives
and false_negatives
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
If top_k
is set, recall will be computed as how often on average a class
among the labels of a batch entry is in the top-k predictions.
If class_id
is specified, we calculate recall by considering only the
entries in the batch for which class_id
is in the label, and computing the
fraction of them for which class_id
is above the threshold and/or in the
top-k predictions.
Args:
thresholds: (Optional) A float value or a python list/tuple of float
threshold values in [0, 1]. A threshold is compared with prediction
values to determine the truth value of predictions (i.e., above the
threshold is true
, below is false
). One metric value is generated
for each threshold value. If neither thresholds nor top_k are set, the
default is to calculate recall with thresholds=0.5
.
top_k: (Optional) Unset by default. An int value specifying the top-k
predictions to consider when calculating recall.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval [0, num_classes)
, where
num_classes
is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Recall() m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) m.result().numpy() 0.6666667
m.reset_states() m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Recall()])
RecallAtPrecision class
tensorflow.keras.metrics.RecallAtPrecision(precision, num_thresholds=200, name=None, dtype=None)
Computes best recall where precision is >= specified value.
For a given score-label-distribution the required precision might not be achievable, in this case 0.0 is returned as recall.
This metric creates four local variables, true_positives
, true_negatives
,
false_positives
and false_negatives
that are used to compute the
recall at the given precision. The threshold for the given precision
value is computed and used to evaluate the corresponding recall.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
precision: A scalar value in range [0, 1]
.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given precision.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.RecallAtPrecision(0.8) m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) m.result().numpy() 0.5
m.reset_states() m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9], ... sample_weight=[1, 0, 0, 1]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.RecallAtPrecision(precision=0.8)])
RootMeanSquaredError class
tensorflow.keras.metrics.RootMeanSquaredError(name="root_mean_squared_error", dtype=None)
Computes root mean squared error metric between y_true
and y_pred
.
Standalone usage:
m = tf.keras.metrics.RootMeanSquaredError() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) m.result().numpy() 0.5
m.reset_states() m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) m.result().numpy() 0.70710677
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.RootMeanSquaredError()])
SensitivityAtSpecificity class
tensorflow.keras.metrics.SensitivityAtSpecificity(specificity, num_thresholds=200, name=None, dtype=None)
Computes best sensitivity where specificity is >= specified value.
the sensitivity at a given specificity.
Sensitivity
measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn)).
Specificity
measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp)).
This metric creates four local variables, true_positives
, true_negatives
,
false_positives
and false_negatives
that are used to compute the
sensitivity at the given specificity. The threshold for the given specificity
value is computed and used to evaluate the corresponding sensitivity.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
For additional information about specificity and sensitivity, see the following.
Args:
specificity: A scalar value in range [0, 1]
.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given specificity.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.SensitivityAtSpecificity(0.5) m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) m.result().numpy() 0.5
m.reset_states() m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], ... sample_weight=[1, 1, 2, 2, 1]) m.result().numpy() 0.333333
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SensitivityAtSpecificity()])
SparseCategoricalAccuracy class
tensorflow.keras.metrics.SparseCategoricalAccuracy(name="sparse_categorical_accuracy", dtype=None)
Calculates how often predictions matches integer labels.
acc = np.dot(sample_weight, np.equal(y_true, np.argmax(y_pred, axis=1))
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as sparse categorical accuracy
: an idempotent operation
that simply divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.SparseCategoricalAccuracy() m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]]) m.result().numpy() 0.5
m.reset_states() m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) m.result().numpy() 0.3
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
SparseCategoricalCrossentropy class
tensorflow.keras.metrics.SparseCategoricalCrossentropy(
name="sparse_categorical_crossentropy", dtype=None, from_logits=False, axis=-1
)
Computes the crossentropy metric between the labels and predictions.
Use this crossentropy metric when there are two or more label classes.
We expect labels to be provided as integers. If you want to provide labels
using one-hot
representation, please use CategoricalCrossentropy
metric.
There should be # classes
floating point values per feature for y_pred
and a single floating point value per feature for y_true
.
In the snippet below, there is a single floating point value per example for
y_true
and # classes
floating pointing values per example for y_pred
.
The shape of y_true
is [batch_size]
and the shape of y_pred
is
[batch_size, num_classes]
.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. from_logits: (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution. axis: (Optional) Defaults to -1. The dimension along which the metric is computed.
Standalone usage:
y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]
logits = log(y_pred)
softmax = exp(logits) / sum(exp(logits), axis=-1)
softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
xent = -sum(y * log(softmax), 1)
log(softmax) = [[-2.9957, -0.0513, -16.1181],
[-2.3026, -0.2231, -2.3026]]
y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]]
xent = [0.0513, 2.3026]
Reduced xent = (0.0513 + 2.3026) / 2
m = tf.keras.metrics.SparseCategoricalCrossentropy() m.update_state([1, 2], ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) m.result().numpy() 1.1769392
m.reset_states() m.update_state([1, 2], ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], ... sample_weight=tf.constant([0.3, 0.7])) m.result().numpy() 1.6271976
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SparseCategoricalCrossentropy()])
SparseTopKCategoricalAccuracy class
tensorflow.keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name="sparse_top_k_categorical_accuracy", dtype=None
)
Computes how often integer targets are in the top K
predictions.
Args: k: (Optional) Number of top elements to look at for computing accuracy. Defaults to 5. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.SparseTopKCategoricalAccuracy(k=1) m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) m.result().numpy() 0.5
m.reset_states() m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) m.result().numpy() 0.3
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SparseTopKCategoricalAccuracy()])
SpecificityAtSensitivity class
tensorflow.keras.metrics.SpecificityAtSensitivity(sensitivity, num_thresholds=200, name=None, dtype=None)
Computes best specificity where sensitivity is >= specified value.
Sensitivity
measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn)).
Specificity
measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp)).
This metric creates four local variables, true_positives
, true_negatives
,
false_positives
and false_negatives
that are used to compute the
specificity at the given sensitivity. The threshold for the given sensitivity
value is computed and used to evaluate the corresponding specificity.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
For additional information about specificity and sensitivity, see the following.
Args:
sensitivity: A scalar value in range [0, 1]
.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given sensitivity.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.SpecificityAtSensitivity(0.5) m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8]) m.result().numpy() 0.66666667
m.reset_states() m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8], ... sample_weight=[1, 1, 2, 2, 2]) m.result().numpy() 0.5
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SpecificityAtSensitivity()])
SquaredHinge class
tensorflow.keras.metrics.SquaredHinge(name="squared_hinge", dtype=None)
Computes the squared hinge metric between y_true
and y_pred
.
y_true
values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.SquaredHinge() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) m.result().numpy() 1.86
m.reset_states() m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) m.result().numpy() 1.46
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SquaredHinge()])
Sum class
tensorflow.keras.metrics.Sum(name="sum", dtype=None)
Computes the (weighted) sum of the given values.
For example, if values is [1, 3, 5, 7] then the sum is 16. If the weights were specified as [1, 1, 0, 0] then the sum would be 4.
This metric creates one variable, total
, that is used to compute the sum of
values
. This is ultimately returned as sum
.
If sample_weight
is None
, weights default to 1. Use sample_weight
of 0
to mask values.
Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.Sum() m.update_state([1, 3, 5, 7]) m.result().numpy() 16.0
Usage with compile()
API:
model.add_metric(tf.keras.metrics.Sum(name='sum_1')(outputs))
model.compile(optimizer='sgd', loss='mse')
TopKCategoricalAccuracy class
tensorflow.keras.metrics.TopKCategoricalAccuracy(k=5, name="top_k_categorical_accuracy", dtype=None)
Computes how often targets are in the top K
predictions.
Args: k: (Optional) Number of top elements to look at for computing accuracy. Defaults to 5. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.TopKCategoricalAccuracy(k=1) m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) m.result().numpy() 0.5
m.reset_states() m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) m.result().numpy() 0.3
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.TopKCategoricalAccuracy()])
TrueNegatives class
tensorflow.keras.metrics.TrueNegatives(thresholds=None, name=None, dtype=None)
Calculates the number of true negatives.
If sample_weight
is given, calculates the sum of the weights of
true negatives. This metric creates one local variable, accumulator
that is used to keep track of the number of true negatives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true
, below is false
). One metric
value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.TrueNegatives() m.update_state([0, 1, 0, 0], [1, 1, 0, 0]) m.result().numpy() 2.0
m.reset_states() m.update_state([0, 1, 0, 0], [1, 1, 0, 0], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.TrueNegatives()])
TruePositives class
tensorflow.keras.metrics.TruePositives(thresholds=None, name=None, dtype=None)
Calculates the number of true positives.
If sample_weight
is given, calculates the sum of the weights of
true positives. This metric creates one local variable, true_positives
that is used to keep track of the number of true positives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true
, below is false
). One metric
value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
m = tf.keras.metrics.TruePositives() m.update_state([0, 1, 1, 1], [1, 0, 1, 1]) m.result().numpy() 2.0
m.reset_states() m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0]) m.result().numpy() 1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.TruePositives()])
binary_accuracy function
tensorflow.keras.metrics.binary_accuracy(y_true, y_pred, threshold=0.5)
Calculates how often predictions matches binary labels.
Standalone usage:
y_true = [[1], [1], [0], [0]] y_pred = [[1], [1], [0], [0]] m = tf.keras.metrics.binary_accuracy(y_true, y_pred) assert m.shape == (4,) m.numpy() array([1., 1., 1., 1.], dtype=float32)
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
threshold: (Optional) Float representing the threshold for deciding whether
prediction values are 1 or 0.
Returns:
Binary accuracy values. shape = [batch_size, d0, .. dN-1]
binary_crossentropy function
tensorflow.keras.metrics.binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
Computes the binary crossentropy loss.
Standalone usage:
y_true = [[0, 1], [0, 0]] y_pred = [[0.6, 0.4], [0.4, 0.6]] loss = tf.keras.losses.binary_crossentropy(y_true, y_pred) assert loss.shape == (2,) loss.numpy() array([0.916 , 0.714], dtype=float32)
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
from_logits: Whether y_pred
is expected to be a logits tensor. By default,
we assume that y_pred
encodes a probability distribution.
label_smoothing: Float in [0, 1]. If > 0
then smooth the labels.
Returns:
Binary crossentropy loss value. shape = [batch_size, d0, .. dN-1]
.
categorical_accuracy function
tensorflow.keras.metrics.categorical_accuracy(y_true, y_pred)
Calculates how often predictions matches one-hot labels.
Standalone usage:
y_true = [[0, 0, 1], [0, 1, 0]] y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] m = tf.keras.metrics.categorical_accuracy(y_true, y_pred) assert m.shape == (2,) m.numpy() array([0., 1.], dtype=float32)
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
Args: y_true: One-hot ground truth values. y_pred: The prediction values.
Returns: Categorical accuracy values.
categorical_crossentropy function
tensorflow.keras.metrics.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
Computes the categorical crossentropy loss.
Standalone usage:
y_true = [[0, 1, 0], [0, 0, 1]] y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred) assert loss.shape == (2,) loss.numpy() array([0.0513, 2.303], dtype=float32)
Args:
y_true: Tensor of one-hot true targets.
y_pred: Tensor of predicted targets.
from_logits: Whether y_pred
is expected to be a logits tensor. By default,
we assume that y_pred
encodes a probability distribution.
label_smoothing: Float in [0, 1]. If > 0
then smooth the labels.
Returns: Categorical crossentropy loss value.
deserialize function
tensorflow.keras.metrics.deserialize(config, custom_objects=None)
Deserializes a serialized metric class/function instance.
Arguments: config: Metric configuration. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization.
Returns:
A Keras Metric
instance or a metric function.
get function
tensorflow.keras.metrics.get(identifier)
Retrieves a Keras metric as a function
/Metric
class instance.
The identifier
may be the string name of a metric function or class.
metric = tf.keras.metrics.get("categorical_crossentropy") type(metric)
metric = tf.keras.metrics.get("CategoricalCrossentropy") type(metric)
You can also specify config
of the metric to this function by passing dict
containing class_name
and config
as an identifier. Also note that the
class_name
must map to a Metric
class
identifier = {"class_name": "CategoricalCrossentropy", ... "config": {"from_logits": True}} metric = tf.keras.metrics.get(identifier) type(metric)
Arguments: identifier: A metric identifier. One of None or string name of a metric function/class or metric configuration dictionary or a metric function or a metric class instance
Returns:
A Keras metric as a function
/ Metric
class instance.
Raises:
ValueError: If identifier
cannot be interpreted.
hinge function
tensorflow.keras.metrics.hinge(y_true, y_pred)
Computes the hinge loss between y_true
and y_pred
.
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)
Standalone usage:
y_true = np.random.choice([-1, 1], size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.hinge(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), ... np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1))
Args:
y_true: The ground truth values. y_true
values are expected to be -1 or 1.
If binary (0 or 1) labels are provided they will be converted to -1 or 1.
shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Hinge loss values. shape = [batch_size, d0, .. dN-1]
.
kl_divergence function
tensorflow.keras.metrics.kl_divergence(y_true, y_pred)
Computes Kullback-Leibler divergence loss between y_true
and y_pred
.
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred) assert loss.shape == (2,) y_true = tf.keras.backend.clip(y_true, 1e-7, 1) y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1) assert np.array_equal( ... loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1))
Args: y_true: Tensor of true targets. y_pred: Tensor of predicted targets.
Returns:
A Tensor
with loss.
Raises:
TypeError: If y_true
cannot be cast to the y_pred.dtype
.
kl_divergence function
tensorflow.keras.metrics.kld(y_true, y_pred)
Computes Kullback-Leibler divergence loss between y_true
and y_pred
.
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred) assert loss.shape == (2,) y_true = tf.keras.backend.clip(y_true, 1e-7, 1) y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1) assert np.array_equal( ... loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1))
Args: y_true: Tensor of true targets. y_pred: Tensor of predicted targets.
Returns:
A Tensor
with loss.
Raises:
TypeError: If y_true
cannot be cast to the y_pred.dtype
.
kl_divergence function
tensorflow.keras.metrics.kullback_leibler_divergence(y_true, y_pred)
Computes Kullback-Leibler divergence loss between y_true
and y_pred
.
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred) assert loss.shape == (2,) y_true = tf.keras.backend.clip(y_true, 1e-7, 1) y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1) assert np.array_equal( ... loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1))
Args: y_true: Tensor of true targets. y_pred: Tensor of predicted targets.
Returns:
A Tensor
with loss.
Raises:
TypeError: If y_true
cannot be cast to the y_pred.dtype
.
log_cosh function
tensorflow.keras.metrics.log_cosh(y_true, y_pred)
Logarithm of the hyperbolic cosine of the prediction error.
log(cosh(x))
is approximately equal to (x ** 2) / 2
for small x
and
to abs(x) - log(2)
for large x
. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Standalone usage:
y_true = np.random.random(size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.logcosh(y_true, y_pred) assert loss.shape == (2,) x = y_pred - y_true assert np.allclose( ... loss.numpy(), ... np.mean(x + np.log(np.exp(-2. * x) + 1.) - math_ops.log(2.), axis=-1), ... atol=1e-5)
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Logcosh error values. shape = [batch_size, d0, .. dN-1]
.
log_cosh function
tensorflow.keras.metrics.logcosh(y_true, y_pred)
Logarithm of the hyperbolic cosine of the prediction error.
log(cosh(x))
is approximately equal to (x ** 2) / 2
for small x
and
to abs(x) - log(2)
for large x
. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.
Standalone usage:
y_true = np.random.random(size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.logcosh(y_true, y_pred) assert loss.shape == (2,) x = y_pred - y_true assert np.allclose( ... loss.numpy(), ... np.mean(x + np.log(np.exp(-2. * x) + 1.) - math_ops.log(2.), axis=-1), ... atol=1e-5)
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Logcosh error values. shape = [batch_size, d0, .. dN-1]
.
mean_absolute_error function
tensorflow.keras.metrics.mae(y_true, y_pred)
Computes the mean absolute error between labels and predictions.
loss = mean(abs(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute error values. shape = [batch_size, d0, .. dN-1]
.
mean_absolute_percentage_error function
tensorflow.keras.metrics.mape(y_true, y_pred)
Computes the mean absolute percentage error between y_true
and y_pred
.
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
Standalone usage:
y_true = np.random.random(size=(2, 3)) y_true = np.maximum(y_true, 1e-7) # Prevent division by zero y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), ... 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute percentage error values. shape = [batch_size, d0, .. dN-1]
.
mean_absolute_error function
tensorflow.keras.metrics.mean_absolute_error(y_true, y_pred)
Computes the mean absolute error between labels and predictions.
loss = mean(abs(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute error values. shape = [batch_size, d0, .. dN-1]
.
mean_absolute_percentage_error function
tensorflow.keras.metrics.mean_absolute_percentage_error(y_true, y_pred)
Computes the mean absolute percentage error between y_true
and y_pred
.
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
Standalone usage:
y_true = np.random.random(size=(2, 3)) y_true = np.maximum(y_true, 1e-7) # Prevent division by zero y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_absolute_percentage_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), ... 100. * np.mean(np.abs((y_true - y_pred) / y_true), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean absolute percentage error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_error function
tensorflow.keras.metrics.mean_squared_error(y_true, y_pred)
Computes the mean squared error between labels and predictions.
After computing the squared distance between the inputs, the mean value over the last dimension is returned.
loss = mean(square(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_logarithmic_error function
tensorflow.keras.metrics.mean_squared_logarithmic_error(y_true, y_pred)
Computes the mean squared logarithmic error between y_true
and y_pred
.
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_logarithmic_error(y_true, y_pred) assert loss.shape == (2,) y_true = np.maximum(y_true, 1e-7) y_pred = np.maximum(y_pred, 1e-7) assert np.allclose( ... loss.numpy(), ... np.mean( ... np.square(np.log(y_true + 1.) - np.log(y_pred + 1.)), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared logarithmic error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_error function
tensorflow.keras.metrics.mse(y_true, y_pred)
Computes the mean squared error between labels and predictions.
After computing the squared distance between the inputs, the mean value over the last dimension is returned.
loss = mean(square(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_error(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared error values. shape = [batch_size, d0, .. dN-1]
.
mean_squared_logarithmic_error function
tensorflow.keras.metrics.msle(y_true, y_pred)
Computes the mean squared logarithmic error between y_true
and y_pred
.
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.mean_squared_logarithmic_error(y_true, y_pred) assert loss.shape == (2,) y_true = np.maximum(y_true, 1e-7) y_pred = np.maximum(y_pred, 1e-7) assert np.allclose( ... loss.numpy(), ... np.mean( ... np.square(np.log(y_true + 1.) - np.log(y_pred + 1.)), axis=-1))
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Mean squared logarithmic error values. shape = [batch_size, d0, .. dN-1]
.
poisson function
tensorflow.keras.metrics.poisson(y_true, y_pred)
Computes the Poisson loss between y_true and y_pred.
The Poisson loss is the mean of the elements of the Tensor
y_pred - y_true * log(y_pred)
.
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.poisson(y_true, y_pred) assert loss.shape == (2,) y_pred = y_pred + 1e-7 assert np.allclose( ... loss.numpy(), np.mean(y_pred - y_true * np.log(y_pred), axis=-1), ... atol=1e-5)
Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Poisson loss value. shape = [batch_size, d0, .. dN-1]
.
Raises:
InvalidArgumentError: If y_true
and y_pred
have incompatible shapes.
serialize function
tensorflow.keras.metrics.serialize(metric)
Serializes metric function or Metric
instance.
Arguments:
metric: A Keras Metric
instance or a metric function.
Returns: Metric configuration dictionary.
sparse_categorical_accuracy function
tensorflow.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
Calculates how often predictions matches integer labels.
Standalone usage:
y_true = [2, 1] y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] m = tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred) assert m.shape == (2,) m.numpy() array([0., 1.], dtype=float32)
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
Args: y_true: Integer ground truth values. y_pred: The prediction values.
Returns: Sparse categorical accuracy values.
sparse_categorical_crossentropy function
tensorflow.keras.metrics.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
Computes the sparse categorical crossentropy loss.
Standalone usage:
y_true = [1, 2] y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred) assert loss.shape == (2,) loss.numpy() array([0.0513, 2.303], dtype=float32)
Args:
y_true: Ground truth values.
y_pred: The predicted values.
from_logits: Whether y_pred
is expected to be a logits tensor. By default,
we assume that y_pred
encodes a probability distribution.
axis: (Optional) Defaults to -1. The dimension along which the entropy is
computed.
Returns: Sparse categorical crossentropy loss value.
sparse_top_k_categorical_accuracy function
tensorflow.keras.metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)
Computes how often integer targets are in the top K
predictions.
Standalone usage:
y_true = [2, 1] y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] m = tf.keras.metrics.sparse_top_k_categorical_accuracy( ... y_true, y_pred, k=3) assert m.shape == (2,) m.numpy() array([1., 1.], dtype=float32)
Args: y_true: tensor of true targets. y_pred: tensor of predicted targets. k: (Optional) Number of top elements to look at for computing accuracy. Defaults to 5.
Returns: Sparse top K categorical accuracy value.
squared_hinge function
tensorflow.keras.metrics.squared_hinge(y_true, y_pred)
Computes the squared hinge loss between y_true
and y_pred
.
loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)
Standalone usage:
y_true = np.random.choice([-1, 1], size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = tf.keras.losses.squared_hinge(y_true, y_pred) assert loss.shape == (2,) assert np.array_equal( ... loss.numpy(), ... np.mean(np.square(np.maximum(1. - y_true * y_pred, 0.)), axis=-1))
Args:
y_true: The ground truth values. y_true
values are expected to be -1 or 1.
If binary (0 or 1) labels are provided we will convert them to -1 or 1.
shape = [batch_size, d0, .. dN]
.
y_pred: The predicted values. shape = [batch_size, d0, .. dN]
.
Returns:
Squared hinge loss values. shape = [batch_size, d0, .. dN-1]
.
top_k_categorical_accuracy function
tensorflow.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=5)
Computes how often targets are in the top K
predictions.
Standalone usage:
y_true = [[0, 0, 1], [0, 1, 0]] y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]] m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=3) assert m.shape == (2,) m.numpy() array([1., 1.], dtype=float32)
Args: y_true: The ground truth values. y_pred: The prediction values. k: (Optional) Number of top elements to look at for computing accuracy. Defaults to 5.
Returns: Top K categorical accuracy value.